www.mymathscloud.com

Please check the examination details be	low before ente	ering your candidate informatio	n
Candidate surname		Other names	
Centre Number Candidate N	umber		
Pearson Edexcel Leve	I 3 GCE	•	
	Paper	8FM0/2	6
	reference	OFIVIU/2	.0
Further Mathema	atics		
Advanced Subsidiary			
Further Mathematics option 26: Further Mechanics 2	ns		
(Part of option J)			
(Part of options)			\longrightarrow
You must have:		Tot	tal Marks
Mathematical Formulae and Statistic	al Tables (Gr	reen), calculator	

Candidates may use any calculator allowed by Pearson regulations.

Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use black ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear.
- Answers without working may not gain full credit.
- Unless otherwise indicated, whenever a value of g is required, take $g = 9.8 \,\mathrm{m\,s^{-2}}$ and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- The total mark for this part of the examination is 40. There are 4 questions.
- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

1.

Figure 1

A uniform plane lamina is in the shape of an isosceles trapezium *ABCDEF*, as shown shaded in Figure 1.

- *BCEF* is a square
- AB = CD = a
- BC = 3a
- (a) Show that the distance of the centre of mass of the lamina from AD is $\frac{11a}{8}$

(5)

The mass of the lamina is M

The lamina is suspended by two light vertical strings, one attached to the lamina at A and the other attached to the lamina at F

The lamina hangs freely in equilibrium, with BF horizontal.

(b) Find, in terms of M and g, the tension in the string attached at A

(2)

Question 1 continued

Taking Print A with coordinates (0,0) as the origin

COM of triangle 0 from A y direction: 0+0+-3a

 $\frac{\chi \text{ direction:}}{3} = \frac{2a}{3}$

Since shape is symmetrical in multiple axes it will be at the curtre $\frac{3a}{2}$ from B in positive z direction and negative y direction.

COM g(2) at: $(\frac{5a}{2}, -\frac{3a}{2})$

 $\frac{13a}{3}$ 2. direction: $\frac{4a + 5a + 4a}{3} = \frac{13a}{3}$

O verall (OM of lamina from AD)

Since it is from AD, only consider y-axis.

Area is proportional to the mass as
the lamina is uniform, we can
substitute the force due to the mass
with the area.

moments = force x perpendicular distance

The sum of moments is equal to the overall moment acting through the COM.

Mathematically $\rightarrow \sum m_i x_i = \overline{x} \sum m_i$ Where m = force

n = perpendicular distance

(Area of thingle (1) × (OM)+ (Area of square (2) × (OM) + (Area of thingle (3) × (OM) = Area of lamina × COM $\frac{1}{2}(3a)(a) \times (-a) + (3a)(3a) \times (-\frac{3a}{2}) + \frac{1}{2}(a)(3a) \times (-a) = (\frac{1}{2}(3a)(a) + (3a)(3a) + \frac{1}{2}(a)(3a)) \times \overline{\lambda}$ $-\frac{3a^3}{2} - \frac{27a^3}{2} - \frac{3a^3}{2} = 12a^2 \overline{\lambda}$ $-\frac{33}{2}a^3 = 12a^2 \overline{\lambda}$

 $\overline{\mathcal{H}} = -\frac{11}{8}a$

-- Distance of COM from AD = 11 a

Question 1 continued

Taking moments about F TA = tension on string at A

$$\frac{13}{8} a \times M_g = T_A \times 3a$$

$$T_{A} = \frac{13}{24} \text{ Mg}$$

sum of auti-clockwise moments

Where moments = gorre x perpendicular distance

Question 1 continued
Question 1 continued
(Total for Question 1 is 7 marks)

2.

Figure 2

Uniform wire is used to form the framework shown in Figure 2.

In the framework

- ABCD is a rectangle with AD = 2a and DC = a
- BEC is a semicircular arc of radius a and centre O, where O lies on BC

The diameter of the semicircle is BC and the point E is such that OE is perpendicular to BC.

The points A, B, C, D and E all lie in the same plane.

(a) Show that the distance of the centre of mass of the framework from BC is

$$\frac{a}{6+\pi}$$

(5)

The framework is freely suspended from A and hangs in equilibrium with AE at an angle θ ° to the downward vertical.

(b) Find the value of θ .

(4)

The mass of the framework is *M*.

A particle of mass kM is attached to the framework at B.

The centre of mass of the loaded framework lies on OA.

(c) Find the value of k.

(3)

Question 2 continued

a) Formulae for distance of centre of mass of a uniform circular are from its centre

rsin α prom canbe α where α is in radians and r=radius

Applying formulae	
$\alpha = 90^\circ = \frac{\pi}{2}$ rad	
2 100	
distance from 0	
$\therefore \text{ distance from 0} \\ = a \sin \frac{\pi}{2} = 2a$	
$\frac{\pi}{\pi}$ π	

To find COM from BC, take moments about BC in a direction.

Taking direction BA as positive $a \times \frac{1}{2} + a \times \frac{a}{2} + 2a \times a + 2a \times 0 + a \pi \times - \frac{2a}{\pi} =$

 $\frac{a^{2} + a^{2} + 2a + 2a + a\pi}{2} = (6a + a\pi) \bar{x}$

 $a^2 = a(6+\pi)\pi$ $\overline{\pi} = a = > so distance$ $6+\pi$ from BC is

proven

Since this is a framework, we use moment = force x perpendicular distance if force is proportional to the lengths

force is proportional to the lengths

as they are uniform who so we can
replace force with length since we

use

 $\sum m_i x_i = \overline{x} \sum m_i$ Where sum of moments of each component is equal to the singular moment through the COM

Question 2 continued

Let G = COM

To gird 0, we must find angle DAE and subtract angle DAG from it

Angle DAG

$$\therefore \theta = \alpha - \beta$$

$$= \tan^{-1}(2) - \tan^{-1}\left(1 - \frac{1}{6+\pi}\right)$$

$$\theta = 21.7^{\circ} (3sf)$$

Question 2 continued

Taking moments about OA

* Using trigonometry to obtain perpendicular distances

(Total for Question 2 is 12 marks)

www.nymathscloud.com

3. A cyclist is travelling around a circular track which is banked at an angle α to the horizontal, where $\tan \alpha = \frac{3}{4}$

The cyclist moves with constant speed in a horizontal circle of radius r.

In an initial model,

- the cyclist and her cycle are modelled as a particle
- the track is modelled as being rough so that there is sideways friction between the tyres of the cycle and the track, with coefficient of friction μ ,

where
$$\mu < \frac{4}{3}$$

Using this model, the maximum speed that the cyclist can travel around the track in a horizontal circle of radius r, without slipping sideways, is V.

(a) Show that
$$V = \sqrt{\frac{(3+4\mu)rg}{4-3\mu}}$$

(7)

In a new simplified model,

- the cyclist and her cycle are modelled as a particle
- the motion is now modelled so that there is **no** sideways friction between the tyres of the cycle and the track

Using this new model, the speed that the cyclist can travel around the track in a horizontal circle of radius r, without slipping sideways, is U.

(b) Find U in terms of r and g.

(2)

(c) Show that U < V.

(2)

 $\sin x = \frac{3}{5}$

$$\cos \alpha = \frac{4}{5}$$

Equation for contripetal acceleration: $a = \frac{v^2}{r}$

Resolving pries horizontally
$$R(\rightarrow): R\sin\alpha + F\cos\alpha = \frac{mV^2}{\Gamma}$$

$$R(\downarrow): R\cos\alpha - F\sin\alpha = mg$$

$$\frac{4}{5}R - \frac{3}{5}\mu R = mg$$

$$R(\frac{4}{5} - \frac{3}{5}\mu) = mg$$

$$R\left(\frac{3}{5} + \frac{4}{5}\mu\right) = \frac{mV^2}{r}$$

$$R = \frac{5mg}{4-3\mu}$$

Substituting (1)

$$\frac{5mg}{4-3\mu} \left(\frac{3}{5} + \frac{4}{5} \mu \right) = \frac{mV^2}{r}$$

$$\frac{3\text{prig} + 4\mu\text{prig}}{4 - 3\mu} = \frac{\text{pri} V^{2}}{r}$$

$$\frac{(3 + 4\mu)\text{rg}}{4 - 3\mu} = V^{2}$$

$$V = \frac{(3+4\mu)rg}{4-3\mu}$$

denominators:
$$4-3\mu < 4$$

$$\frac{3}{4} < \frac{3+4\mu}{4-3\mu}$$

hence U < V

www.mymathscloud.com Question 3 continued	NA VISI
Question 3 continued	SCIOUO
	DO NOT WATER IN THIS AREA
	I'U'AA
	17710
	A TA CA
	Ç
	200
	DO NOT WRITE IN THIS AREA
	ç
	2
	Wind
	1 2
	DO NOT WRITE IN THIS AREA
	AD EX

www.mymathscloud.com

www.mymathscloud.com Question 3 continued
Question 3 continued
(Total for Question 3 is 11 marks)

4. A particle P moves on the x-axis. At time t seconds the velocity of P is $v \, \text{m s}^{-1}$ in the direction of x increasing, where

$$v = \frac{1}{2} \left(3e^{2t} - 1 \right) \qquad t \geqslant 0$$

The acceleration of P at time t seconds is $a \,\mathrm{m}\,\mathrm{s}^{-2}$

(a) Show that a = 2v + 1

(b) Find the acceleration of P when t = 0

(c) Find the exact distance travelled by P in accelerating from a speed of $1 \,\mathrm{m \, s^{-1}}$ to a speed of $4 \,\mathrm{m \, s^{-1}}$

(7)

 $a = d \left(\frac{1}{2} \left(3e^{2t} - 1\right)\right)$ a)

since
$$V = \frac{1}{2} (3e^{2t} - 1)$$

 $2V = 3e^{2t} - 1$
 $3e^{2t} = 2V + 1$

Rearranging for
$$a = 3e^{2t}$$
, we get $a = 2v + 1$

t=0,

Substituting into expression

Question 4 continued

$$V = \frac{dx}{dt}$$
 Substituting $\frac{1}{2} \left(3e^{2t} - 1 \right) = \frac{dx}{dt}$

$$\int \frac{1}{2} \left(3e^{2t} - 1 \right) dt = \int 1 dx$$

$$\frac{1}{2}\left(\frac{3}{2}e^{2t}-t\right)+C = x$$
where C is a constant
$$\frac{3}{4}e^{2t}-\frac{t}{2}+C = x$$

$$\frac{3}{4}e^{2t} - \frac{t}{2} + C = \chi$$

Substitute values to obtain 1

Substitute values to obtain
$$\sqrt{\frac{x}{between}}$$
 two times = $\left[\frac{3}{4}e^{2t} - \frac{t}{2}\right]_a^b$ constant C

$$V = 1 : 1 = \frac{1}{2} \left(3e^{2t} - 1 \right) \qquad V = 4 : 4 = \frac{1}{2} \left(3e^{2t} - 1 \right)$$

$$3 = 3e^{2t} \qquad \qquad 9 = 3e^{2t}$$

$$1 = e^{2t} \qquad \qquad 3 = e^{2t}$$

$$2t = 0$$
 $2t = \ln 3$ $t = 0$ $t = \frac{1}{2} \ln 3$

Using yellow highlighted expression

$$\mathcal{X} = \left[\frac{3}{4} e^{2t} - \frac{t}{2} \right]_{0}^{\frac{1}{2} \ln 3}$$

$$= \left(\frac{3}{4} e^{2(\frac{1}{2} \ln 3)} - \frac{\frac{1}{2} \ln 3}{2} \right) - \frac{3}{4}$$

$$=\frac{3}{4}-\frac{1}{4}\ln 3$$
 m

www.mymathscloud.com

www.mymathscloud.com Question 4 continued
Question 4 continued
(Total for Question 4 is 10 marks)
TOTAL FOR FURTHER MECHANICS 2 IS 40 MARKS